New existence theorems for maximal elements in noncompact H-spaces with applications to equilibrium of games

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence Theorems for Maximal Elements in H-spaces with Applications on the Minimax Inequalities and Equilibrium of Games

In this paper, we give two new existence theorems for maximal elements in H-spaces. As their applications, we obtain a extended version of Fan–Yen minimax inequality and some new existence theorems of an equilibrium for a qualitative game and an abstract economy. Our main results not only generalize the corresponding results of [4, 12, 15, 16] to H-spaces, but also the open question raised by Y...

متن کامل

Some Maximal Elements’ Theorems in FC-Spaces

Let I be a finite or infinite index set, let X be a topological space, and let Yi, φNi i∈I be a family of FC-spaces. For each i ∈ I, letAi : X → 2i be a set-valued mapping. Some new existence theorems of maximal elements for a set-valued mapping and a family of set-valued mappings involving a better admissible set-valuedmapping are established under noncompact setting of FC-spaces. Our results ...

متن کامل

Maximal elements of $mathscr{F}_{C,theta}$-majorized mappings and applications to‎ ‎generalized games

In the paper‎, ‎some new existence theorems of maximal elements for‎ ‎$mathscr{F}_{C,theta}$-mappings and $mathscr{F}_{C,theta}$-majorized mappings are established‎. ‎As applications, ‎some new existence theorems of equilibrium points for‎ ‎one-person games‎, ‎qualitative games and generalized games are obtained‎. ‎Our results unify and generalize most known results‎ ‎in recent literature‎.

متن کامل

Existence of Maximal Elements and Equilibria in Linear Topological Spaces

We present some mathematical theorems which are used to generalize previous results on the existence of maximal elements and of equilibrium. Our main theorem in this paper is a new existence proof for an equilibrium in an abstract economy, which is closely related to a previous result of Borglin-Keiding, and Shafer-Sonneschein, but allows for an i&nite number of commodities and a countably infi...

متن کامل

Maximal elements of sub-topical functions with applications to global optimization

We study the support sets of sub-topical functions‎ ‎and investigate their maximal elements in order to establish a necessary and sufficient condition‎ ‎for the global minimum of the difference of two sub-topical functions‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2000

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(00)85019-1